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We consider Monte Carlo algorithms for the simulation of charged lattice gases with purely local dynamics.
We study the mobility of particles as a function of temperature and show that the poor mobility of particles at
low temperatures is due to “trails” or “strings” left behind after particle motion. We introduce modified updates
which substantially improve the efficiency of the algorithm in this regime.
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I. INTRODUCTION

The properties of many condensed matter systems can not
be understood without considering the Coulombic interac-
tion. DNA, proteins, polyelectrolytes, colloids and even wa-
ter are all structured by electrostatics, which must be repro-
duced faithfully in any numerical study. Unfortunately, the
simulation of the electrostatic interactions is difficult; due to
the slow decay of the potential in 1 /r one can not truncate
the interaction �1� as is often done with other molecular in-
teractions. Most working codes now use a variant of the
Ewald sum to account for the interaction between periodic
images of the basic simulation cell. As a consequence the
time need to evaluate the electrostatic interaction can domi-
nate in the simulation of charged systems.

In a Monte Carlo simulation with the Ewald method, the
motion of a single charge requires summing its interactions
with the N−1 other charges and their periodic images, result-
ing in a O�N2� computational cost per sweep. This becomes
impractical when N is large. In simulations with explicit
modeling of all charges N�104 is commonly required. In
molecular dynamics the situation is better: when all particles
are moved simultaneously, better CPU time scalings are pos-
sible ranging from O�N� for multigrid algorithms �2� to
O�N3/2� for an optimized Ewald summation �3�. However
these molecular dynamics codes are complex to implement.

The unfavorable complexity of conventional Monte Carlo
methods originates in the use of the electrostatic potential �,
which is the solution to Poisson’s equation

�2� = − �/� .

This equation has a unique solution for given charge distri-
bution and boundary conditions. When a charge is moved,
the new solution for � is computed and the interaction en-
ergy qi��ri� of the moved charge with all other charges qi in
the system changes. The electrostatic interaction imple-
mented in this way is instantaneous. Note however �4�, the
thermodynamical study of charged systems does not require
instantaneous Coulombic interactions, the free energy is also
correctly sampled when only Gauss’s law

div E = �/�

is imposed on the electric field. The fact that solutions to
Gauss’s law are not unique results in an extra flexibility
which allows one to implement a purely local Monte Carlo

scheme for the simulation of systems with electrostatic inter-
actions. The computation effort is reduced to O�N� per
Monte Carlo sweep. The disadvantage of the algorithm is
that it requires a grid to discretize the electrostatic degrees of
freedom, however this is also true of multigrid and Fourier
methods used for molecular dynamics.

The final efficiency of the Monte Carlo algorithm depends
on the number of sweeps required to sample independent
configurations which in turn is a function of the particle mo-
bility resulting from the Monte Carlo dynamics. Highly mo-
bile charges enable one to generate independent configura-
tions rapidly; if charges were to become “trapped” or
“localized” due to their interaction with the field it could
prevent the generation of uncorrelated samples. Monitoring
the acceptance rate of particle updates may only give partial
information in that on the total efficiency of an algorithm.
For instance trapped particles could move locally �resulting
in a good acceptance rate� without being able to explore all
of space.

In this article we perform a detailed study of the charge
mobility � in local Monte Carlo algorithms in order to com-
pare efficiencies of various implementations. Firstly we de-
velop a technique to measure � by relating the mobility to

the dynamics of the average electric field, Ē. The mobility
will be studied as a function of temperature. With our previ-
ous implementation, � drops dramatically at low tempera-
tures, becoming unmeasurable for parameters which are
needed to study typical materials: For instance monovalent
ions in water at room temperature where �=78, T=300 K,
a=1 Å with a the mesh size. The drop in efficiency origi-
nates in the constrained dynamics of the electric field, lead-
ing to the generation of “trails” or “strings” which trap par-
ticles at low temperature and suppress their mobility.

We will explore ways of reducing this trapping. The up-
date law introduced previously �4� for particle motion is not
the only way one can move a charge. Even if each charge
update must be accompanied by some field update, the latter
is only loosely constrained. Duncan, Sedgewick, and Coal-
son recently used this fact to introduce �5� a better particle-
plaquette update. We will present several field updating
schemes leading to less trapping. These schemes are very
flexible in that they have a freely adjustable “spreading” pa-
rameter w, upon which their effects and their computational
complexity depend. Schemes which use a larger spreading
parameter are more time-consuming but lead to much larger
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efficiencies at physically interesting temperatures.
We have already shown �6� that off-lattice implementa-

tions of the algorithm �using continuous interpolation of
charges with splines� do not suffer the mobility drop that we
discuss in this paper. Rather, our present work is motivated
by the existence of a wide spectrum of interesting and useful
lattice models. For example, it is known �7–9� that finely
discretized lattice fluids exhibit the same critical behavior as
continuum fluids. Another example is the bond fluctuation
model for polymers �10,11� which is rather easily general-
ized to study charged polymers, or polyelectrolytes. All these
models already use “spread” or extended particles where the
hard cores of the particles span several lattice sites in order
to reduce lattice artefacts to an acceptable level.

We will begin �Sec. II� with a description of the theoret-
ical basis and implementation of local Monte Carlo algo-
rithms with electrostatics. In Sec. III we show how to mea-
sure the mobility of charges and apply the method to the
simplest algorithm. We interpret the behavior of the accep-
tance rate and mobility as a function of temperature �Sec.
IV�, introducing the concept of field trails or strings. We
show how to increase particle mobility in Secs. V and VI.
Finally we will present the CPU time for representative
simulations and give the reader an estimate of optimal pa-
rameters.

II. MONTE CARLO ALGORITHM

We give a basic description of the algorithm previously
developed in Refs. �4,12,13�. We first recall its theoretical
basis, and then present the simplest implementation, high-
lighting places where the method can be further optimized
for speed.

A. Theoretical foundation

In order to sample configurations of a system containing
charges, we require that a set �ri� of particle positions is
generated with weight

z��ri�� = e−��1/2�V��r;�ri����r;�ri��d
3r+U��ri���,

where ��r ; �ri��=�iqi��r−ri� is the charge distribution of the
configuration, ��r ; �ri�� is the unique solution to Poisson’s
equation, and U��ri�� is the potential of all other interactions.
The partition function then is

Z =	 
�
i

d3ri�z��ri�� .

In the usual treatment of electrostatic interactions the
electric field is given by EP=−grad �: it is unique and sat-
isfies both Gauss’s law div EP=� /� and the static version of
Faraday’s law curl EP=0. We choose the convention where
the potential of a charge q is q /4��r. The algorithm is based
on relaxing Faraday’s law so that E=EP+curl Q, a decom-
position familiar from the Coulomb gauge of electrodynam-
ics. Fourier transforming we find that EP is longitudinal,

�EP�k = − ik�k 
 k

and that curl Q is transverse,

�curl Q�k = ik 	 Qk � k .

As a consequence, the electrostatic energy

�

2
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E2 d3r =
�
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�curl Q�2d3r�
=
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��d3r +
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V
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so that the statistical weight of a configuration of charges and
field is

z���ri�,E�� = e−��U��ri��+��/2��VE2 d3r� = z��ri��e−���/2��VE�
2 d3r,

where for clarity we have introduced the transverse field
E�=curl Q. This field is constrained by div E�=0; it is in-
dependent of the charge configuration. Thus, the partition
function of the system of charges and field splits into two
parts,

Z� =	 
�
i

d3ri�DE���div E��z���ri�,E��

= 
	 
�
i

d3ri�z��ri���
	 
	 DE���div E��e−���/2��VE�

2 d3r�
= Z 	 Ztr, �1�

where Ztr is the partition function of transverse field. The
statistical weight of a configuration of charges is z��ri��
	Ztr; all the weights have been multiplied by the same con-
stant. Hence configurational probabilities are left unchanged.
Of course sampling this system requires introducing Monte
Carlo moves appropriate for integrating over E� degrees of
freedom.

B. A charged lattice gas

We consider a cubic simulation cell of L3 sites with peri-
odic boundary conditions. Particles are placed on sites of a
lattice with mesh spacing a, and field variables representing
electric flux are defined on links. The electric field diver-
gence at a site is the sum of fluxes over the six outgoing
links. �See Fig. 1.� Transverse field degrees of freedom ap-
pear as a nonzero line integral of E on plaquettes of the
lattice.

To start a simulation we must construct a state consistent
with Gauss’s law. We initialize the electric field for the simu-
lation with a single sweep through the network: We use a
procedure that follows a Hamiltonian path through the lat-
tice. Such a path visits each site just once and traverses each
link either once or zero times. We begin by initializing all
field values on the lattice to zero and start at an arbitrary
point 1 of the lattice; the node 1 holds the charge q1. A single
link of the path, �1,2�, connects it to site 2, on which we set
the outgoing field to q1 /a2�; Gauss’s law is now fulfilled on
site 1 and we move to the node 2.
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At each step, on arriving at site i holding qi, we have
already solved the Gauss constraint for sites �1, . . . , i−1�.
The incoming link to the site, �i−1, i�, thus bears the initial-
ized field Ei−1,i= �� j=1

j=i−1qj� /a2�. We now set the outgoing
field Ei,i+1 to �� j=1

j=i qj� /a2� so that Ei,i−1+Ei,i+1=qi /a2�:
Gauss’s law is now fulfilled on site i and we go to site i+1.
At the end of the path, we reach site V=L3 with EV−1,V
= �� j=1

j=V−1qj� /a2�. The imposition of periodic boundary con-
ditions in charged systems is only possible if the total charge
Q is zero �otherwise the total energy is divergent�. Thus
EV−1,V= �Q−qV� /a2�=−qV /a2� and Gauss’s law is satisfied
everywhere on the lattice.

We take advantage of the new field degrees of freedom to
construct local updates for charge moves. Consider an initial
configuration ��i� where a charge q is at point A, and the
initial electric field E�i� satisfies Gauss’s law �div E�i�

=��i� /��. If a trial places q at point B, the final configuration
is ��f�=��i�−q��r−rA�+q��r−rB�, and a new solution for the
field must be found. In order to remain consistent with
Gauss’s law it is sufficient to add to E�i� field lines �E flow-
ing from B to A and totalizing q /� flux. The final field E�f�

=E�i�+�E now satisfies again Gauss’s law for the final
charge configuration,

div E�f� =
��i�

�
+

q

�
��r − rB� −

q

�
��r − rA� =

��f�

�
.

We call �E “the slaved update.” Nothing having been re-
quired of it except the total flux, we can choose it to be
localized in space, so that charge moves result in local up-
dates of the simulated system. In addition �E should be sym-
metrically chosen so that detailed balance applies to the for-
ward and reverse updates. Our previous choice of �E, which
modifies just the link connecting A to B is illustrated in Fig.
2. Nevertheless, the “total flux” constraint lets us free to use
more complex slaved updates. We will show in this paper
that splitting �E into several lines helps increase the algo-
rithm efficiency.

Finally in order to correctly sample the partition function
�1� we integrate over the transverse degrees of freedom of
the electric field. We do this with Monte Carlo moves which
change the circulation of the electric field, but do not modify

its divergence. One way of doing this is by modifying the
field on the four links defining a plaquette �Fig. 3�a��. If one
increases the field on links along the edge of a given
plaquette by some constant value, at all sites div E remains
constant. This kind of update, being local, leads to diffusive
dynamics for E�: O�L2� sweeps are needed to yield an inde-
pendent configuration.

An alternative method of integrating over E� was intro-
duced �14�. These worm updates �Fig. 3�b�� make use of a
biased random walk to generate a closed contour along
which the field is modified. This contour visits typically L3

sites and turns out to be particularly efficient at equilibrating
the electric field at all length scales simultaneously: all Fou-
rier modes of E� decay at the same rate, O�1� sweeps are
enough to produce an independent field configuration.

The aim of a Monte Carlo algorithm is to produce statis-
tically independent configurations with minimum computa-
tional cost. The local updates described above allow one to
efficiently update charge and field configurations. However
in order to understand the global dynamics and convergence
of the algorithm we shall study electric field autocorrelation
functions. We now show that high mobility � of the charges
leads to fast decay of the field correlations.

FIG. 1. Left: cubic lattice mesh around site i. The electric flux

i,j flowing upward through the hashed cube face is assigned to link
�i , j� on the right: Ei,j =
i,j /a2. Field divergence at i equals the
outward flux through the cube surface, � j��NN�Ei,j where NN stands
for nearest neighbors. In following figures only two dimensions of
the lattice will be shown for clarity.

FIG. 2. �Color online� A pair of lattice sites, before and after a
particle move. Left, the initial configuration is made up of a charge
at A and one solution to Gauss’s constraint: at A the field divergence
is six times 1/6, equaling q=1 �in reduced units where a=1, �=1�,
and at B it is 5	1/30−1/6=0. Right, the charge has moved to B
and a flux �E=q=1 flowing from B to A has been added to the
central link. Then Gauss’s law is again verified: at A, div E=5
	1/6−5/6=0, and at B, div E=5	1/30+5/6=1=q.

FIG. 3. To update E� one may choose between plaquette moves
�a� which increase the field along a single plaquette edge, and worm
moves ��b�, dashed line� which modify it along the path of a given
random walk. Both are thermodynamically equivalent since any
field configuration reached through worm moves may be obtained
through multiple plaquette updates �as shown in �b�� combined with
updates of the k=0 mode of the field.
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III. MEASURING CHARGE MOBILITY

Under the dynamics of the algorithm, Figs. 2 and 3, E
remains consistent with Gauss’s law at all times. Considering
the time derivative of this law, we find

div
�E

�t
=

��div E�
�t

=
1

�

��

�t

which translates in the implementation as

div �E =
1

�
�� . �2�

Updates to the electric field can be considered as being due
to local currents such that

div J +
��

�t
= 0, �3�

where we introduced the time unit �t=1 Monte Carlo step.
Combining Eqs. �2� and �3� we find

div �E = −
�t

�
div J ,

or

�E = −
�t

�
J + �t curl H �4�

with H arbitrary. This is a discrete version of Ampere’s law
of electromagnetism.

Spatially averaging Eq. �4�, we find the change in the

average electric field Ē during an update,

�Ē = −
�t

�
J̄ . �5�

This equation is independent of H; the last term in Eq. �4�
gives zero due to periodic boundary conditions. This is con-
sistent with the fact that local plaquette updates do not
change the average electric field in a periodic system.

Our simulations are on a system containing N mobile unit
charges, either the symmetric plasma made up with N /2 par-
ticles of each sign �qi= ±e�, or the one-component plasma
�OCP� of N positive charges moving in a fixed negative
background. Linear response gives insight on the relation
between charge mobility and field evolution. The electric
current is due to the movement of mobile charges,

J = �
i

Ji = �
i

�ivi = �
i

qinivi, �6�

where i� �+,−�, �i are charge densities and ni are number
densities; n−=0 for the OCP. On average, velocities are re-
lated to field by

vi = �qiE . �7�

Given the charge symmetry of the algorithm, positive and
negative ions in a symmetric plasma have the same mobility.
Equations �6� and �7� lead to J=e2�n++n−��E. n++n−=n
=N /V is the number density of mobile charges. Hence

J = e2n�E . �8�

We should bear in mind that these relations are phenomeno-
logical. For example, in Eq. �7� proportionality holds only
when the field intensity is not too high. It will also become
apparent that in certain limits � can fall to zero for large,
dilute systems.

Substituting Eq. �8� in Eq. �5�, and replacing the differ-
ence equation by a differential equation we find that

�Ē

�t
= −

e2n�

�
Ē . �9�

Ē is the k=0 Fourier mode of the electric field. Equation �9�
implies that the autocorrelation function of this mode be-
haves as follows:

�Ē�t��Ē�t� + t��t� = Ce−�e2n�/��t,

where C is the squared amplitude of the thermal fluctuations

of Ē. Measuring this autocorrelation function we find expo-
nential decay with a characteristic time �0=� / �e2n�� or
equivalently a decay rate �0=e2n� /�. We fit all our numeri-
cal data with a single exponential and verify the quality of
the resulting curve by eye.

In our simulations we also monitored other modes of the
field and found that the mode k=0 is the slowest. Higher
modes of the field couple directly to plaquette updates as
well as particle motion, and relax with the dispersion law
�k=�0+DEk2 �12�. Larger k are less sensitive to low particle
mobility �low �0�. They will not be considered further in this
paper.

The time scale �0 can be understood with a scaling argu-
ment. In order to produce two uncorrelated samples of the
system, one should wait for the charges to diffuse through
the characteristic correlation length of the system, the Debye
length lD=��kBT /e2n. Thus �0= lD

2 /D, and �0=
D
2D

=e2nD /�kBT, with a diffusion constant D. We recover the
above expression for the relaxation rate if we use the relation
D=kBT�. D defined in this way relates to the mobility of
charges under an external electric field �where opposite
charges move opposite ways�, not to the mobility under a
constant external force �where all particles move together�.

Thus we will measure the mobility of charges or, equiva-
lently, their diffusion coefficient, by computing the autocor-
relation function of the average electric field. This method
has the additional advantage that we need not keep track of
the winding of particles across the periodic cell boundaries.

IV. LIMITING FACTORS FOR MOBILITY

Acceptance rate is often used to monitor the efficiency of
Monte Carlo simulations. However a high acceptance rate
does not necessarily mean useful work has been performed.
For example, the diffusion dynamics of point defects or in-
terstitials in a crystal are very slow. In a Monte Carlo simu-
lation most time is spent vibrating the atoms around their
equilibrium positions; even in the limit of very rare diffusion
events the acceptance rate of trial moves remains appre-
ciable. Another example is magnetization reversal of an Ising
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ferromagnet. The state where all spins are oriented against an
applied field is metastable but with very long lifetime; since
the Metropolis algorithm is already very inefficient one uses
rejection-free algorithms �15� to update individual spins, un-
fortunately after a spin has been flipped it is almost certainly
flipped back at the next step, so that the magnetization never
reverses within accessible simulation times.

With our algorithm, a simulation performed at very low
density, Fig. 4, shows that the diffusion coefficient D of
charges drops much faster at low temperatures than the ac-
ceptance rate of particle moves: atoms simply wander around
their mean locations, rather like in the examples above.

A. Variation of the acceptance rate

In the algorithm summarized in Sec. II B, motion of a
charge modifies the field on the single link along which the
particle has moved �see Fig. 2�. Let EAB be the field intensity
on this link before the move. The divergence at A is q /a2�,
and since in the absence of other nearby charges E must be
isotropic around A we expect that �EAB�=q /6a2�. Fluctua-
tions of E� imply that EAB=q /6a2�+�, with � a Gaussian
random variable with standard deviation �. The energy in
these fluctuations is 3L3a3����2 /2�= 3

2�L3a3�2. From equi-
partition and given that there are two polarizations of E�, the
energy in E� is also approximately L3kBT, thus we conclude
that �2=2kBT /3a3�.

During motion of the charge, the field on AB is modified
to −5q /6a2�+�. The energy difference between the two con-
figurations is thus �E=qa�q /3a2�−��. With the Metropolis
algorithm when ��q /3a2� the trial is accepted with prob-
ability exp�−�E /kBT�, otherwise it is automatically accepted.
Computing the average over all values of �, we find the
acceptance rate

R = erfc�q/2�3a�kBT� . �10�

We plot this function together with numerical results in Fig.
5. When T is small, the asymptotic expansion of erfc gives

R =�12T

�
e−1/12T�1 + O�T�� . �11�

Defining y=ln�R /�T� and x=1/T, we find an Arrhenius law
for the acceptance rate y=−x /12+const+O�1/x�, which is
illustrated in the inset of Fig. 5.

We conclude that particle motion becomes hard with this
update scheme for T�1/12 due to a finite energy barrier.
One of our aims in the rest of this paper will be to reduce the
barrier so that the acceptance rate remains high even for
temperatures T�1/12.

B. Field trails and string tension

Let us consider two closely separated charges with the
electric field in equilibrium. The field has the usual dipolar
form familiar from elementary electrostatics. What happens
if we pull very hard on the positive charge so that the sepa-
ration between the charges increases rapidly, without updat-
ing the plaquette degrees of freedom? During the motion of
the particle each link traversed is modified by q /a2� leaving
behind a “trail” of modified links �Fig. 6�. With time the field
configuration will relax back to a dipolar form because of the
updates of the plaquettes equilibrating the transverse field.
However on a short time scale there are few plaquette up-
dates, and dragging the charge along r links costs an energy
which we can estimate to be r�0, where

FIG. 4. �Color online� Logarithm of acceptance rate R, and of
diffusion coefficient D expressed in a2 per particle sweep, versus
inverse temperature. Solid line, Eq. �10�; dotted line, guide to the
eye. R and D are close to 1 at high temperatures, but D drops much
faster than R on decreasing T. One component plasma of two posi-
tive unit charges, box of size L=15.

FIG. 5. �Color online� Acceptance rate R of charge moves ver-
sus temperature. �, simulation results; solid line, Eq. �10�. Inset,
y=ln�R /�T� against x=1/T. Numerical results approach the asymp-
tote Eq. �11� of slope −1/12 �dashed line�. A pair of opposite
charges, box size L=15.

FIG. 6. �Color online� The field update produced by successive
moves of a charge q is a field string of intensity �E=q /a2� con-
necting the particle to its starting position �dashed circle�. The trail
remains as long as no plaquette update intervenes.
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�0 = q2/2a� �12�

is our estimate of the energy rise per link,

a3 �

2
�
E −

q

a2�
�2

− E2� = − aqE +
q2

2a�

and E has zero mean. There is a “string tension,” �0, pulling
the particles back.

In the presence of an external electric field, a pair of op-
posite charges normally separates. A finite string tension im-
plies that this mobility is suppressed. One must spend much
numerical effort on updating the plaquettes in order to de-
stroy the trail and stop particles backtracking. While the
string tension is positive at low temperatures we will now
argue that the thermodynamic tension � should become zero
at a finite temperature: above it the mobility is high even at
low frequencies of updates in the plaquettes.

Consider a trail joining two fixed test charges separated
by a distance r and let the length of the trail joining them be
�. If ��r we can estimate the number of such paths from the
statistics of the path: N�=O�z��. z is a connectivity constant
characterizing the geometry of the walk. For a random walk
z=6, for a self-avoiding walk z=4.68. We now estimate the
free energy of the configuration as

F � ��0 − kBT� ln z = �� . �13�

From this expression we can expect two distinct dynamic
regimes for the algorithm. At low temperatures the tension �
is positive and it is most favorable for the trail to remain
short, ��r. The free energy for separating the charges is
indeed linear and we have a phenomenon similar to confine-
ment in gauge theories. This confinement is only destroyed
by the dynamics of the plaquettes which slowly relaxes the
trail into a dipolar field configuration. At temperatures higher
than Tc��0 /kB ln z�0.3 the line tension drops to zero and
the particles become unconfined. Even without plaquette up-
dates the particles remain mobile and can separate easily.

We also note that there is a very close analogy between
this picture of roughening trails and the �2+1�-dimensional
Hubbard model in the phase approximation, which can be
expressed as a set of fluxes on a lattice �16,17�. This model
has two thermodynamic phases, one with tense field lines
which are strongly suppressed, and a superconducting phase
in which field lines proliferate. The transition occurs at a
temperature T�0.33.

In Fig. 4 we used a split in which half of all updates try to
move one of the two particles, and half of updates modify a
randomly chosen plaquette. The number of plaquettes �3L3

�104� is much larger than the number of particles �N=2�, so
that a given plaquette is rarely updated, trail formation is
probable. The diffusion coefficient of charges indeed drops at
a crossover temperature Tc�0.2 which qualitatively agrees
with the above estimate.

How do we expect this trail-limited mobility to vary as a
function of charge density? If a charge i creates a trail, and a
charge j of the same sign crosses it, then j will also feel the
mean force mentioned above. If j is now dragged back along
the track of i, the field updates will erase the trail �Fig. 7�.
Afterwards, neither i nor j are linked to their initial positions.
We thus expect that the effect of the trails is cut off at a
distance comparable to the interparticle spacing. Indeed we
do find that the mobility increases on simulating systems of
increasing charge densities. Thus in this paper we will con-
centrate on improving the efficiency of the algorithm at very
low densities, working most often with samples containing
just two charges.

In the next two sections we will modify the slaved up-
dates in order to reduce the bare tension of strings. With a
lower �0 we will lessen the crossover temperature Tc�0.2
which results from the balance between energy and entropy
expressed in Eq. �13�. To efficiently simulate condensed mat-
ter systems, particles must remain highly mobile to much
lower temperatures: T=0.2 corresponds to lB=a /4�T
�0.4 Å �with a=1 Å�, whereas the Bjerrum length in water
at room temperature is lB�7 Å. Therefore we aim at lower-
ing Tc by a factor of approximately 20.

V. EXTENDED CHARGES

The expression �12� for the bare tension of the string is
quadratic in the charge, �0=q2 /2a�. Let us now split the
string between two particles into K substrings; each substring
carries a flux of q /K�. The bare tension of each substring
will be �0 /K2, and that of the whole split string will be
K��0 /K2�=�0 /K.

FIG. 7. �Color online� A second charge joins the string left by
the charge of Fig. 6; it is dragged along the original path. Field
updates then erase the previous trail �dashed line�. The field strings
no longer connect the particles to their respective starting sites
�dashed circles�.

FIG. 8. �Color online� Acceptance rate of particle moves versus
temperature for OCP �open symbols, w=1 to 5� and a pair of
charges �filled symbols, w=1 to 3�, temperature rescaled by w3

�DSC, 7�.
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In this section, to form split strings we spread the particles
on cubes of side w; each site in the cube carries a subcharge
of q /w3, and when a particle moves the field is updated on
the w3 links crossed by each subcharge. We use values of w
ranging from 1 �the original algorithm� to 5, and measure the
acceptance rate of particle updates. When we plot the rate as
a function of w3T �Fig. 8� we find that all curves collapse,
except at low temperatures for the two opposite charges due
to pairing. We also simulated point charges with the coupled
update proposed by Duncan, Sedgewick, and Coalson in Ref.
�5� �hereafter denoted by “DSC”�, and the acceptance rates
collapse equally well.

The scaling of the acceptance rate in w3 can be under-
stood as follows: motion of each part of the particle is hin-
dered by a barrier which varies as �1/w3�2. The barriers are
additive leading to a local barrier with an amplitude which
varies as 1 /w3.

When we plot mobility �determined from the dynamics of

Ē� as a function of temperature, we find that the benefit
obtained from charge spreading is not proportional to w3;
curves collapse on using a scaling with w2, Fig. 9. The cross-
section area of the extended charges is equal to w2, so their
field trails are made up from K=w2 field lines of strength
q /a2w2�. This gives a bare tension for the trail of �0 /w2.
When trail formation limits mobility, the typical crossover
temperature Tc thus scales as 1 /w2. This seems to indicate
that the statistics of the paths and the connectivity constant
do not change with w.

To further confirm the idea that field trails are limiting
mobility we introduced a new kind of field update: We define
a cubic box of side b centered on a site occupied by a par-
ticle, and then generate a worm update �Sec. II B, and Ref.
�14�� inscribed in the box. At each Monte Carlo step, the
algorithm attempts one of three updates, either a particle
move, a plaquette update, or a “local worm.” Since all
choices are reversible detailed balance is verified.

Worm moves are known to lead to fast relaxation of the
field, so these new “local worm updates” should allow one to
spread out the field trails efficiently, concentrating the com-

putational effort around charges, where the trails are formed.
By introducing them in a 1:1 proportion with particle moves
�with b satisfying b2�w3�, we expect to cancel the effective
string tension. This computation is very expensive; one “lo-
cal worm update” is far more costly than one particle update.
We did not seek further optimization, and do not recommend
this method for production of data with the algorithm.

We find that the crossover temperature Tc of the mobility
drop decreases with these local worm moves. In Fig. 10 the
data superimpose if we rescale by a factor of w3, implying
that the trails are no longer dominating the dynamics. The w3

scaling may be indicating that dynamics are now limited by
the local barrier to particle hops described in Sec. IV A.

The spreading of particles over several sites clearly modi-
fies the interactions at short distance. One should introduce a
hard core interaction for distances less than wa, correspond-
ing to the diameter r0 of the particles. Much of the interesting
physics in soft condensed matter depends on the ratio of the
Bjerrum length lB=e2 /4��kBT to the particle size. One is
typically interested in the range 5� lB /r0�20, which corre-
sponds to 0.004�wT�0.02. While we have succeeded in
reducing the crossover temperature Tc by a factor 1 /w2 we

FIG. 9. �Color online� Mobility in OCP versus temperature �N
=2, L=15�. Each charge is spread on a w-site-side cube. Data col-
lapse when temperature and �0 are scaled by w2. For T→� the
diffusion coefficient of particles is bound by 1 a2�sweep�−1, D satu-
rates and �0�1/T.

FIG. 10. �Color online� Mobility of OCP particles versus tem-
perature at low density �N=2, L=15�. Here local worm moves are
introduced �see text�, and now data are made to collapse when
scaled by w3, showing that field trails have been removed, as op-
posed to data of Fig. 9.

FIG. 11. �Color online� Temporary spreading of charge �here
with w=3�. First step, spread the charge to w3 sites. Second step,
move the extended set of charges. Third step, inverse of the first;
charge fractions collapse back to a point. The overall field update is
the sum of the individual steps.
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have also changed the physical length scale by a factor w.
The final result is only a factor w improvement in Tc when
measured in physical units; a lattice algorithm suitable for
condensed matter simulation would require w�20. Such fine
discretization has been used in lattice models to reproduce
correctly thermodynamical properties of some systems
�18,19�. However for cases where this is not required, one
might prefer to avoid such large w. We now explore methods
of moving charges which do not require permanent spreading
so that the effective length scale in the simulation is not
modified.

VI. TEMPORARY CHARGE SPREADING

There is a direct way of reconciling the requirements that
charges are extended during their motion but otherwise
pointlike: Before moving a particle, one should first spread
its charge evenly onto neighboring sites, then move all sub-
charges as a block, and finally bring them back together �see
Fig. 11�. This defines a charge move involving three sub-
steps.

Each step consists of a set of currents. When a charge is
split a current j�1� flows from the central site. Motion of the
particle generates a current, j�2�. When the charge is col-
lapsed to a point a current j�3� flows from the neighboring
sites back to the center. To maintain the constraint of Gauss’s
law, each of these currents j��� is associated with a field
update �E���=−j����t /�. For step 2, the current on each
modified link is j�2�=q /w3a2�t, as above. During step 1 the
values ji

�1� of the current on links �i� are underdetermined,
they are constrained only by charge conservation Eq. �3�. We
thus additionally require that �i�ji

�1��2 /2 be a minimum, giv-
ing a unique, reversible recipe for the current. We solve for
j�1� by minimizing the functional

F =	 �j�1��2

2
− �
div j�1� +

���1�

�t
� .

The current is the solution of a Poisson-type problem,

j�1� = − grad � and �2� =
���1�

�t

with j�1� ·n=0 on the boundary of the spread charge. The
solution to this equation is computed once during initializa-
tion of the simulation and stored in a lookup table. Step 3 is
the exact reverse of step 1, j�3�=−j�1�. On adding the fields
j�1�, j�2�, and j�3� we find a flow going from the starting site to
the final site, and taking several paths.

If now we simulate our test system using this version of
the algorithm and plot the mobility of particles versus tem-
perature �Fig. 12�, we find practically the same results as in
Fig. 9. The crossover temperature scales with 1/w2. The ad-
vantage is that the particles are still pointlike unlike Sec. V.
Thus we have improved the lowest temperatures efficiently
accessible by a factor of w2 without changing the physically
important length scale.

The method has the advantage of both simplicity and gen-
erality.

�i� A small Poisson equation is solved once before start-
ing simulation in order to determine the “current map.”

�ii� One is free to choose as an intermediate state an ar-
bitrary charge cloud.

We note that temporary spreading includes the Monte
Carlo algorithm of DSC as a special case, it is sufficient to
consider the six nearest neighbors of a site, plus the site
itself, as the volume over which the charge is to be spread.
Each site thus gets one seventh of the total charge q, which
explains the scaling of acceptance rate in Fig. 8. The result of
steps 1 through 3 of Fig. 11 yields a current 3q /7a2�t on the
center link and q /7a2�t around the four plaquettes adjacent
to it. The curve obtained by using DSC updates collapses
with the others in Fig. 12, when scaled by 49/13=3.77
which comes from a simple estimate of the bare string ten-
sion. However in our simulations we have not implemented
the additional step of simulating the update with heat bath
rather than Metropolis update.

Rather than performing three successive steps, another
implementation of the temporary spreading consists in pre-
computing the total “map” of currents j�1�+ j�2�+ j�3�. Such an
implementation is faster, avoiding multiple updates of the
same links through steps 1–3. However, keeping the three
substeps distinct allows one to perform several intermediate
updates of step 2, moving the particle a large distance before
“recondensing” it to a point, as follows. Consider a �starting�
configuration CS of the system. We randomly choose one
particle and spread its charge unconditionally; the field is
updated accordingly and we label the new configuration as
Ci=0; the energy difference between CS and C0 is stored. Then
we successively try d moves of that particle in random di-
rections, which lead to configurations Ci, 1� i�d. The field
is updated and trials are accepted with the Metropolis prob-
ability

m��E� = min�1,exp
−
�E
kBT

�� ,

where �E is the energy difference between the tried and
current configurations. Finally the charge is condensed,

FIG. 12. �Color online� Mobility of temporarily spread charges
versus temperature. OCP, N=2, L=15. The mobility with no
spreading �w=1� is also given. Data are rescaled by w2 �DSC,
3.77�.
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yielding the ending state CE, and the whole update is ac-
cepted with probability

pacc = m„�E�CS → C0� + �E�Cd → CE�… .

The method saves computational effort, for each series of d
moves there are only one spreading and one condensation
steps; there would be d such steps if the procedure of local
hopping of Fig. 11 were used.

To prove that detailed balance is obtained, consider an
instance of such an update. Its global probability is

p�CS → CE� = pacc�
i=0

d−1

p�Ci → Ci+1� .

The probability of the �i+1�th step is

p�Ci → Ci+1�

= �
1

6
m��E�Ci → Ci+1�� if Ci � Ci+1 �accepted trial� ,

1 −
1

6�
��

m��E�Ci
��
→ �… if Ci = Ci+1 �rejected trial� , �

where the sum runs over the six directions of space, and
�E�Ci

��→� is the energy change corresponding to a trial move
in the �� direction from configuration i. The probability of
the reverse update reads

p�CE → CS� = pacc� �
i=0

d−1

p�Ci+1 → Ci� ,

where the global acceptance probability is

pacc� = m„�E�CE → Cd� + �E�C0 → CS�� .

When Ci=Ci+1,

p�Ci → Ci+1�
p�Ci+1 → Ci�

= 1 = exp
−
�Ei→i+1

kBT
� ,

when Ci�Ci+1,

p�Ci → Ci+1�
p�Ci+1 → Ci�

=
m��Ei→i+1�
m��Ei+1→i�

= exp
−
�Ei→i+1

kBT
� ,

and

pacc

pacc�
= exp
−

�E�CS → C0� + �E�Cd → CE�
kBT

� ,

so that

p�CS → CE�
p�CE → CS�

= exp�−

�ES→0 + �
i=0

d−1

�Ei→i+1 + �Ed→E

kBT
�

= exp
−
E�CE� − E�CS�

kBT
� .

To check that the mobility is not changed when these
long-ranged particle moves are used, we simulated our test
system with them, fixing d=15. Regarding time units, one
such update amounts to d elementary Monte Carlo steps. In
Fig. 13 we find that the mobility of charges is very little
affected by the use of long distance particle updates. How-
ever CPU cost is reduced, as is shown in next section.

VII. OPTIMIZATION

In Secs. V and VI, we presented several ways of updating
the electric field during charge motion. We also measured the
mobility of charges. However, the rates �0 have been com-
puted in simulation units; time is expressed in Monte Carlo
trials. As a function of their complexities, the different kinds

TABLE I. Comparison of the various algorithms presented. �0, rate at which field configurations decorrelate, in simulation units. tCPU,
duration of the 60 000 VS simulation. Efficiency, real rate at which configurations decorrelate, given by �0	60 000/ tCPU. w=1 stands for
the single-link field update, displayed for execution time comparisons.

Permanent spreading
Temporary spreading,
precomputed current

Temporary spreading,
long-ranged particle moves

�0 ��VS�−1� tCPU �s� Efficiency �s−1� �0 ��VS�−1� tCPU �s� Efficiency �s−1� �0 ��VS�−1� tCPU �s� Efficiency �s−1�

w=1 0 71 0 0 71 0 0 71 0

w=3 1.3	10−3 160 0.49 5	10−2 592 5 6	10−2 233 15

w=5 1.4	10−2 582 1.4 1.3 2372 33 1.2 912 79

FIG. 13. �Color online� Mobility of temporarily spread charges
versus temperature. OCP, N=2, L=15. Open symbols, one trial
move per update. Filled symbols, d=15 trial moves per update.
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of update require different computational effort. In order to
choose the best parameters for a simulation we should ex-
press the efficiency of the various versions of the algorithm
in terms of CPU time.

We simulated N=2 mobile charges in a box of size
L=15. T=0.01 when charges are pointlike �temporary
spreading� and T=0.01/w when spread. This set of param-
eters is representative for simulating a monovalent ion in
water. At each elementary Monte Carlo step �MCS�, we try a
particle move with probability p1=50%, and a plaquette up-
date with probability p2=50%. We define a “volume sweep”
�VS� 1 VS=L3 MCS. 60 000 VS�2	108 MCS are per-
formed after equilibration. Temporary spreading was imple-
mented in both ways of Sec. VI, first, with steps 1 to 3 of
Fig. 11 summed up and stored in a single lookup table; sec-
ond, with multiple steps 2 between each spreading-and-
recondensing pair of events.

In Table I we compare the efficiency of the various up-
dates introduced in this paper. We used a Pentium 4 at
2.6 GHz; our C�� code was compiled with an Intel com-
piler. We conclude that the most efficient field update is the
temporary spreading of charges on w=5 cubes. At T=0.01,
the mobility reached with w=5 is close to the maximum
possible value, D�0.15 a2�sweep�−1 is rather close to satu-
ration. We thus do not expect benefit from further spreading
of charges �w�6�. As noted previously, both versions of
temporary spreading yield almost the same mobility. The dif-
ference between the two is CPU time, long-ranged particle
moves lead to a faster algorithm thanks to fewer spreading
and recondensing steps. This version should thus be used for
free charges.

Finally, we have checked that our results remain valid for
higher densities. We applied our optimal solution �temporary

spreading over 53 sites� to simulate OCPs containing N=14,
34, and 336 positive charges, which, respectively, corre-
sponds to number densities n�0.4%, 1%, and 10%.

In Sec. III, we calculated a relationship according to
which �0�n�. This was for �0 in physically relevant units of
time, like particle sweeps �PS�, the effects of each charge add
up, hence the factor of n. Here we measure time in volume
sweeps �VS�, and work at constant numerical effort, split
amongst particles, the more charges there are, the fewer trials
each one does. 1 VS=0.5/n PS, so that �0 �in�VS�−1�
=0.5�0 �in�PS�−1� /n is directly proportional to �. Plotting
mobility against temperature in Fig. 14 we find that lowest
mobility is found at the lowest density; at high density �
decreases, possibly because of steric hindrance, but remains
greater than when N=2. Thus using our algorithm is always
at least as efficient as displayed in Table I.

VIII. CONCLUSION

The original version of the local Monte Carlo algorithm
suffers from two problems at low temperature: First the ac-
ceptance rate becomes low due to a energy barrier for par-
ticle motion. A more serious problem is that the mobility
falls even faster than the acceptance rate. We understand this
fall in mobility by considering the tension of the strings left
behind particles as they move. The different scaling of the
acceptance rate and the mobility with the spreading param-
eter w is a clear demonstration that two different mechanisms
are important in limiting particle motion.

Simple modifications to the algorithm reduce the energy
barrier for single particle moves, but also the string tension.
The algorithm is then suitable for simulation of lattice mod-
els of Coulomb interacting particles. Examples include the
restricted primitive model for electrolytes, or lattice models
of polyelectrolytes.

Combination of the update methods used in this article
with the worm update for the transverse field due to Alet and
Sørensen �17� can lead to efficient codes for the simulation
of charge systems at high dilution: Consider a set of N
charges in a simulation box of size L. It takes a computa-
tional effort of order NL2 for these particles to diffuse the
system size. We have already shown �14� that the 2L3 trans-
verse degrees of freedom of the lattice can be integrated over
in O�1� sweeps of the worm algorithm with an effort scaling
as L3. One can thus equilibrate a dilute system of mobile
charges with a computer effort which scales as �NL2+L3�.

The time moving the particles dominates the time needed
for the electrostatic integration if N�L, or if the density n
�1/L2; when L is large the algorithm remains efficient even
for very dilute charges. It is thus well suited to the study of
heterogenous systems such as surfaces and polyelectrolytes.

FIG. 14. �Color online� Mobility of charges temporarily spread
on w=5 cubes, for an OCP at various densities �n=N /L3 with
L=15�.
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